
SoK: Understanding CI/CD Security: A
Comprehensive Review of Architecture, Attacks,

and Defenses
1st Ryan Zmuda

Secure and Resilient Systems
Riverside Research

Beavercreek, OH, USA
rzmuda@riversideresearch.org

2nd Russell Graves
Secure and Resilient Systems

Riverside Research
Beavercreek, OH, USA

rgraves@riversideresearch.org

3rd Michael Shepherd
Secure and Resilient Systems

Riverside Research
Lexington, MA, USA

mshepherd@riversideresearch.org

4th Scott Brookes
Secure and Resilient Systems

Riverside Research
Lexington, MA, USA

sbrookes@riversideresearch.org

Abstract—Maintaining the confidentiality, availability, and in-
tegrity of CI/CD systems against attacks which target their
pipelines poses a significant security challenge. Attacks like
Solarwinds’s Orion Sunburst and CodeCov’s Secret Exfiltration
demonstrate that the abuse of simple misconfigurations spanning
the vastly complex stack of services which make up CI/CD
pipelines can have devastating consequences. In this paper, we
quantify and consolidate CI/CD terminology, present a system
architecture characterizing CI/CD, analyze patterns in existing
CI/CD attacks, categorize popular free and open source defense
tools, and perform gap analysis evaluation on existing tooling.
We find that state-of-the-art CI/CD defense tools fail to mitigate
5 out of the 7 evaluation attacks we created.

I. INTRODUCTION

The Continuous Integration and Continuous Delivery / De-
ployment (CI/CD) paradigm has garnered an immense level of
use and support over the last decade, shaping and redefining
almost every aspect of the software delivery process. At its
core, CI/CD uses automated pipelines for testing, building, and
deploying software. The term DevOps was coined from the
increased collaboration between both Development and Op-
erations teams. The newer Development-Security-Operations
(DevSecOps) focus has emerged from DevOps in response to
an increased industry focus on security.

The difficulty in securing CI/CD pipelines stems from the
increased level of abstraction and centralization of previously
disjoint parts of the build and release software development
lifecycle. This shift in environment has resulted in a concen-
tration of desirable targets, like secret keys and credentials,
into one convenient target for attackers. The collation of these
desirable targets expands the attacker’s capacity for lateral
movement upon breach by dissolving otherwise traditional
segmentation between services.

While the main characterizing feature of CI/CD has been
automated pipelines, the entirety of the build and deployment

chain is reliant on a trusted platform provider (like a GitLab
instance), the broader software supply chain (npm, docker hub,
etc), and the security of the organization’s infrastructure that
executes the pipeline. This composition of services compli-
cates quantifying the full extent of the Trusted Compute Base
(TCB) of a CI/CD environment.

CI/CD pipelines must be able to access private source code
and APIs, various internal and external package registries,
external repositories for artifact compilation or product orches-
tration, and other capabilities as needed in order to fulfill its
role as a development and deployment multi-tool. This exten-
sive set of capabilities and permissions necessitates security
validation. Attacks like SolarWinds Sunburst [1] demonstrate
the reach and impact of compromising an automated build
and deployment pipeline, in which a malicious version of the
Orion software propagated from an infected build server down-
stream to affect more than 18,000 business and government
customers.

A CI/CD pipeline’s unique reliance on novel and established
supply chain sources poses a significant challenge for securing
the pipeline against software supply chain vulnerabilities. In
the open source community, the reusability of Pipelines-as-
Packages (PaPs) has expanded the reach of the supply chain
directly into the pipeline stages themselves. Reusable pipeline
stages can lead to a cascade of vulnerabilities from just
one compromised upstream dependency. An example of such
an attack would be the breach in CodeCov [2], where an
infected CodeCov release propagated into dependent pipelines,
exfiltrating their secrets to a centralized server.

Investigating and improving measures specific to the secu-
rity of CI/CD pipelines is paramount to addressing the growing
complexity and intricacy of CI/CD systems and their attacks.
We offer the following research questions to help guide the
efficient addressing of future CI/CD security challenges:



RQ1. What components typically make up the trusted execu-
tion environment of CI/CD pipelines, and how are they
arranged?

RQ2. What classes of attacks are used against CI/CD pipelines,
and what are their outcomes?

RQ3. What approaches or tools exist to protect the integrity,
validity, or availability of CI/CD pipelines?

RQ4. How do existing CI/CD security tools perform against
established vulnerability patterns?

We answer these questions by exploring and formalizing
CI/CD system architecture and attack surfaces in Section IV,
aggregating and categorizing CI/CD attacks in Section V,
analyzing and classifying tools for securing CI/CD pipelines in
Section VI, and performing novel CI/CD security gap analysis
in Section VII.

II. BACKGROUND

The DevOps methodology arose between 2007 and 2008
due to a cultural shift towards an increase in automation and
collaboration between development, operations, and quality
assurance teams. In more recent years, an increased attention
on introducing security practices into DevOps has led to the
DevSecOps methodology that advocates for a shift left in
security practices, to earlier into the development cycle. Both
DevOps and DevSecOps rely on CI/CD, a pattern comprised
of continuous integration, continuous delivery, and continuous
deployment practices.

• Continuous integration (CI) involves frequently merging
code changes into a central repository, which is typically
equipped with automated testing. The iterative process of
frequently integrating smaller patches allows each change
to be thoroughly tested in isolation, identifying bugs
much earlier on in the development cycle.

• Continuous delivery (CD) automates the deployment pro-
cess of an artifact or service, up to a final step for
manual approval. This ensures that the target software
is always ready to be deployed to production, while
allowing manual review and approval.

• Continuous deployment (CD) is similar to continuous
delivery, but there is no manual intervention involved.
All of the validation is built into the pipeline, and any
resulting artifact is automatically approved contingent on
its automated tests passing.

Within continuous delivery and continuous deployment,
there are multiple models of deployment into production
environments. Push-based deployments require a deployment
pipeline to package and export a final artifact to an external
service, while pull-based deployments utilize external deploy-
ment agents configured to continually query a source for new
configurations or artifacts to deploy.

Most CI/CD pipelines are linked in some way to a Source
Code Management (SCM) solution, which in turn is based on
a Version Control System (VCS) like git or subversion. Execu-
tion of the pipeline is typically triggered automatically based
on events in the SCM solution’s codebase, like pull requests or

git commits. Pipelines are often defined within a SCM or VCS
repository itself as declarative configuration files. Defining
platform level services and infrastructure through declarative
configurations is commonly referred to as Infrastructure-as-
Code (IaC).

The architecture of CI/CD environments is complex and
varies greatly based on the platform or repository. Despite
these differences, each pipeline is universally composed of
stages that are sent to an executor or runner. A stage (or job)
is a sequence of actions, which can be combined to form a
greater pipeline. Some platforms refer to the combination of
jobs as ”workflows”, but they are functionally the same as the
pipeline itself.

Pipelines are interpreted by executors, which sequentially
perform operations specified by the pipeline in its IaC. Ex-
ecutors can be standalone, but they are typically implemented
inside a runner. Runners are individual on-demand agents that
accept pipeline dispatches. These runners are usually virtual
machines or containers executing on a server hosted in the
cloud by the SCM provider or self-hosted by the repository
maintainers behind a firewall.

Many SCM provider companies offer CI/CD pipeline solu-
tions that are either built-in to the platform service, like GitHub
Actions or GitLab Pipelines, or act as a standalone entity, like
Jenkins. Provider solutions can be utilized through managed
cloud instances or deployed in self-hosted environments, as
illustrated in Table I. This distinction clarifies the vulnera-
bility space of the pipeline execution environment, especially
concerning self-hosted environments that require additional
maintenance and security efforts.

TABLE I
Common CI/CD Providers and Their Environments.
Self-hosted environments require additional security

considerations.

Provider Cloud Self Hosted
AWS CodePipeline Yes No
Google Cloud Pipeline Yes No
IBM Cloud CD Yes No
Oracle Cloud DevOps Yes No
GitHub Actions Yes Yes
GitLab Pipelines Yes Yes
BitBucket Pipelines Yes Yes
CircleCI Yes Yes
TravisCI Yes Yes
Azure Pipelines Yes Yes
Jetbrains TeamCity Yes Yes
Jenkins No Yes

Pipeline runners from cloud providers are typically available
either for free with usage quotas, or on a paid enterprise plan.
Many of these providers allow customers to supplement their
provided cloud runners with separate, self-hosted runners. This
convention is generally discouraged as self-hosted runners
have a higher capacity for abuse [3]. Some providers, like
TravisCI and CircleCI, integrate directly into other providers
SCM solution through hooks. This allows developers to use
GitHub as a SCM platform, but execute their pipelines on an
external TravisCI or CircleCI server.



III. RELATED RESEARCH

Existing CI/CD security research has focused primarily
around the GitHub Actions ecosystem, studying both the
propagation of upstream vulnerabilities from reusable actions
[4], [5], and the lack of proper security configuration practices
on many GitHub repositories [6], [7]. There is, however,
comparatively less research in the exploration and analysis of
other CI/CD platforms.

CI/CD vulnerability mitigation research exists, but not
in a comprehensive or cross-domain manner. Best practices
have been examined for the integration of state-of-the-art
(SOTA) defense tooling [8], including the presentation of
methodologies like VeriDevOps [9], which provides a set of
recommendations for developers to maintain security within
their DevOps environments. Others discuss the integration
of threat modeling into pipelines to improve vulnerability
discovery [10], [11], and the importance of test automation
within CI/CD [12]. Experiments have been performed with
integrating fuzzing stages into CI/CD pipelines, mainly fo-
cused on the potential viability of short term fuzzing [13],
[14]. These experiments could lay the foundation for more
advanced continuous testing tools.

Many researchers have examined CI/CD supply chain se-
curity through the usage of knowledge graphs and SBOMs
(Software Bill-Of-Materials) [15], [16], formalizing desirable
security properties necessary to mitigate supply chain attacks.
Additionally, the security of critical CI/CD components, like
containers, has been studied extensively, with research in-
troducing many mechanisms to understand and audit their
contents or behavior [17]–[19].

Many disjoint pieces of the CI/CD security puzzle have
been explored in academia, but there is no cohesive repre-
sentation of security specifically for CI/CD pipelines covering
all their components across multiple platforms. This paper
seeks to provide this aggregation by introducing a novel CI/CD
system architecture denoting attack surfaces, a classification
framework for existing in-the-wild attacks, an enumeration of
CI/CD security tools, and an evaluation of existing security
tools against controlled evaluation attacks to better understand
the gaps within modern CI/CD tooling.

IV. PIPELINE CHARACTERIZATION

Answering RQ1 requires a complete compositional under-
standing of the trusted execution environment and software
supply chain interface of CI/CD pipelines. Achieving this
understanding can be difficult, however, due to the scale and
complexity of these systems. As a product of our research,
we present Figure 1 as a characterization of a common
CI/CD system architecture to assist in the visualization and
understanding of CI/CD systems.

A. CI/CD System Architecture

While CI/CD execution environments vary greatly, there are
a few common patterns between architectures. A pipeline is
triggered by a hook from the SCM or other external sources
and is then instantiated within a runner. This pipeline runner

is made available by a provider or service which enables the
CI/CD execution interface. Providers of CI/CD services also
commonly host the SCM or VCS that generate the hooks
to the CI/CD execution interface. This provider is a service
running on the platform, which can be self-hosted locally or
managed in the cloud, alongside many other services like
security solutions, ticketing software, and other programs.
Many external services are accessed during a typical pipeline
execution, such as library hosts (e.g. npm, pypi), operating
system package providers (e.g. apt, nixpkgs), and container
registries (e.g. Docker Hub, GitHub Container Registry).

The platform is broadly referred to as the hardware and
software layers which enable the services that run the CI/CD
pipeline. For example, the platform running a self-hosted
GitLab instance would be the physical server, the operating
system, and any virtualization layers. The Admin (A) in Figure
1 is the individual responsible for the creation and maintenance
of the platform. Services like SCM, CNAPPs, ticketing, and
the CI/CD provider itself all run concurrently on the platform.

The DevOps Engineer (E) in Figure 1 is responsible for
the construction, configuration, and maintenance of the CI/CD
pipeline configuation. This configuration specifies the stages,
dependencies, tools, and directions for a pipeline execution. A
dispatched runner will proceed through individual stages when
instructed to execute as specified in the pipeline’s configuration
file. This process is represented as steps within the pipeline
section in Figure 1. Common stages like building, testing,
and deploying are all performed as subsequent interconnected
steps. It is typical for the deployment stages of pipelines to
end with pushing an artifact to an external location, such as
a package registry or artifactory. For our purposes, we refer
to such deployments as being shipped into the production
environment.

The Developer (D) in Figure 1 is an outside user of the
Version Control or SCM solution, to which the pipeline is
connected. The developer will submit patches or changes to
a codebase, to which the Provider will automatically fire
hooks that spawn pipelines the DevOps Engineer (E) has
configured. These pipelines will then operate on the patch
content, performing builds, tests, and more. For providers like
GitHub, hooks can also be fired due to Pull Request (PR) or
Issue events, which allow pipelines to perform more complex
tasking like testing PR code or running triaging tools on bug
reports.

B. Supply Chain

Pipelines access a variety of supply chain sources, both
internally and externally. Library sources like npm, pypi, and
cargo provide both packages to the artifact and tools for the
pipeline execution itself. Repositories like nixpkgs and the
Ubuntu package repository provide operating system packages
like compilers or fuzzers to the pipeline. Reusable pipeline
components have also become critical to modern CI/CD
development, especially on platforms like GitHub. GitHub
provides the ”GitHub Marketplace,” a service that allows users
to publish reusable GitHub Actions or Workflows, enabling



Fig. 1: A graphic illustrating the composition of a CI/CD environment. DevOps Engineers (E) and Admins (A) work together
to maintain the CI/CD environment, used by Developers (D). A complex execution process begins with an event hook from
an SCM or VCS. Several normally disjoint Attack Surfaces are present in this one system.

generic stages like Docker Buildx Setup [20] to be inserted
into thousands of dependent pipelines.

While these reusable stages increase the productivity of
workflows, they also increase their supply chain attack surface.
The recent tj-actions supply chain attack [21] demonstrates
that even reputable and widely used reusable actions can
be compromised. Reusable stages themselves are capable of
relying on other reusable stages, meaning in practice that
one upstream compromise of a reusable action can reach an
enormous amount of downstream dependencies. Research has
shown that within a set of 447,238 GitHub Actions workflows,
97% of them were using at least one unverified reusable action
[4].

In addition to the threat posed by reusable stages, novel
CI/CD supply chain attacks like cache poisoning have recently
begun to emerge [22]. As pipelines work with a large amount
of packages and data, reusable stages like GitHub’s Cache
Action [23] allow for storing intermediate files and artifacts
between pipeline runs. It has been demonstrated that these
caches can be trivially poisoned, and often face little to no
validation [24], [25]. Recent attacks have leveraged leaked
credentials to replace cached objects with malicious ones
through platform APIs [22]. Once infected, these cached
objects are downloaded by subsequent pipelines, posing a
number of security risks.

Containerization also plays a large role in pipeline ex-

ecution. Many providers execute their pipeline runners as
containers, like the GitHub Actions Runner [26]. Container
Registries like ChainGuard, Docker Hub, and the GitHub
Container Registry provide container images used as both
bases for derivative images built by the pipeline, and images
for the runners which execute the stages. Additionally, it is
common practice to run individual stages within a larger
pipeline in separate containers, and many providers expose
interfaces for this in their pipeline configuration specification
[27].

C. Attack Surface

Due to the scope of trusted components which make up
a CI/CD pipeline, CI/CD security tools are disjoint and
multifaceted. Many tools seek to secure one attack surface
of a pipeline, by restricting network traffic [28]–[30], or
parsing IaC for errors [31]–[34]. We identify the following
6 vulnerable attack surfaces within CI/CD pipelines:

• AS1) The Platform:
Server and operating system-level security targets, includ-
ing hosted services such as ticketing, issue tracking, doc-
umentation, and wiki software; CI/CD platform security
is largely an extension of existing platform security.

• AS2) Containers:
Virtualized execution environments commonly used
within a pipeline; contain a breadth of potentially vulner-



TABLE II
An aggregation of well documented CI/CD related attacks, classified with their exploited attack surface and outcomes. The

exploitable weaknesses in most of the attack surfaces were misconfigurations of the related component.

⋆ = Caused By Misconfiguration

Name Date Attack Surface Property Violated
Homebrew Jenkins Breach [35] August, 2018 AS1: Platform ⋆ Integrity
StackOverflow Teamcity [36] May, 2019 AS1: Platform ⋆ Confidentiality (Code, PII)
Webmin RCE [37] July, 2019 AS1: Platform ⋆ Integrity
PHP Git Breach [38] March, 2021 AS1: Platform ⋆ Integrity
CodeCov Supply Chain Attack [2] April, 2021 AS2: Container Integrity
PyTorch [3] January, 2024 AS4: Runner ⋆ Integrity
Solar Winds SunBurst [1] December, 2020 AS5: Pipeline ⋆ Integrity
Google Flank [39] February, 2024 AS5: Pipeline ⋆ Confidentiality (Keys)
Azure Karpenter [40] August, 2024 AS5: Pipeline ⋆ Confidentiality (Keys)
ultralytics pypi cryptojacking [25] December, 2024 AS5: Pipeline ⋆ Integrity
Kong Ingress Controller Crypto Mining [41] January, 2025 AS5: Pipeline ⋆ Integrity
tj-actions changed files supply chain attack [21] March, 2025 AS6: Provider Confidentiality (Keys)
GitHub action-download-artifact Poisoning [42] December, 2022 AS6: Provider Integrity
Uber GitHub AWS Exfiltration [43] 2014 & 2016 AS6: Provider ⋆ Confidentiality (PII)
Samsung SmartThings Leak [44] May, 2019 AS6: Provider ⋆ Confidentiality (Code)
Mercedes Source Code Leak [45] May, 2020 AS6: Provider ⋆ Confidentiality (Code)
Nissan Source Code Leak [46] January, 2021 AS6: Provider ⋆ Confidentiality (Code)
New York State IT Leak [47] June, 2021 AS6: Provider ⋆ Confidentiality (Code)
DeepSource [48] July, 2020 AS6: Provider ⋆ Confidentiality (Code)
Travis CI [49] September, 2021 AS6: Provider Confidentiality (Keys)
solana dogwiftool trojan [50] January, 2025 AS6: Provider Integrity

able packages; when packaged as artifacts, can contain
leaked secrets or credentials.

• AS3) The Supply Chain:
All dependencies, trusted or not, consumed or used by the
CI/CD pipeline; includes the pipeline’s platform, software
from package managers, and external repositories; often
a superset of other attack surfaces with added context or
complexity.

• AS4) The Runner:
The agent that executes arbitrary code specified by
pipeline stages; intentions of code, benign or malicious,
are not known to the runner; often configured with
parameters given by providers.

• AS5) The Pipeline:
The declarative configuration of a pipeline, typically
written in yaml, determines the permissions, execution
environment, stages, etc. about a given pipeline; this
attack surface includes pipelines that do not utilize proper
security validation or testing.

• AS6) The Provider:
Misconfigurations or unknowingly vulnerable capabilities
originating from the CI/CD enterprise service itself; in-
cludes vulnerabilities within the SCM or VCS.

With our analysis of CI/CD architecture revealing 6 distinct
security targets, it is important to understand which of these
targets are abused, and how, in real world CI/CD attacks, in
order to aid our understanding of necessary security tooling.

V. ATTACKS ON CI/CD PIPELINES

To build a collection of reputable CI/CD attacks, we con-
ducted a manual systemic search using public search engines
and academic paper aggregators (e.g., Google Scholar, ACM

DL, IEEE Xplore) for targeted keywords like ”CI/CD (at-
tacks)”, ”DevOps (attacks)”, and ”pipelines”. Our inclusion
criteria for selected attacks required that each attack both
had a clear description of how it was conducted and which
mechanisms were targeted, and was reported on by one or
more credible sources (e.g., the GitHub security advisory,
OWASP [51], academic papers).

We then aggregated and analyzed these CI/CD related
attacks into Table II to understand their origin and impact.
Through manual analysis, we classified the targeted attack
surface and violated security property for each attack. For
the purposes of this work, we focused on attacks targeting
the integrity and confidentiality of CI/CD systems. While the
availability of CI/CD systems is important, a compromise in
the availability of a CI/CD pipeline is often transient and
operational, falling outside the scope of our study.

Integrity Violations are characterized by compromised
pipelines serving malicious artifacts. Once an attacker has
access to a CI/CD system, they can embed untrusted code
inside an artifact through a variety of methods, causing a
previously benign pipeline to begin producing compromised
artifacts. For our purposes, we refer to such attacks as ”Artifact
Infection”. In most cases, these pipelines are treated as trusted
sources by their dependents, causing a propagation of the vul-
nerable artifact into many reliant systems. The most infamous
examples of such outcomes are the SolarWinds Orion attack
[1], and the CodeCov supply chain attack [2].

Confidentiality Violations do not directly tamper with
pipeline artifacts, but instead exfiltrate sensitive data like
source code or private keys outside the breached environment.
As such, we refer to attacks violating the confidentiality of a
pipeline as ”Secret Exfiltration”. The three biggest targets of



secret exfiltration are private keys [21], [39], [40], personally
identifiable information (PII) [36], [43], and source code [44]–
[47]. Of these three, secret exfiltration of private keys like
pipeline tokens and 3rd party API secrets (typically stored
in the pipeline for deployments) poses the most significant
security threat. Attackers that can access the private keys of a
pipeline can use them to perform malicious actions like push
contaminated artifacts to package registries on behalf of the
pipeline, or use the keys to traverse further into a compromised
network. While these three targets are not a comprehensive list
of every possible secret, they are representative of common
targets we observed in our study of real-world attacks.

Instances of these violations can be high impact, as the
centralized nature of pipeline build contexts require them
to contain a high number of typically overly permissive
credentials and tokens, which can be used by attackers to
move laterally inside of compromised environments. Addi-
tionally, the prevalence of automated artifact building and
distribution means that many dependent pieces of software rely
on upstream packages produced by pipelines. An infectious
compromise of one upstream package can quickly propagate
downstream, spreading rapidly. PaPs, like those supplied by
the GitHub Actions Marketplace, make this threat more im-
portant to address as pipelines increasingly rely on a common
set of reusable components.

After investigating and classifying the 21 attacks in Table II,
we note several important observations. Nine of the 21 attacks
were achieved through provider bugs and misconfigurations
(AS6), five targeted the pipeline(AS5), four focused on the
platform (AS1), one on the runner (AS4) and one on the
container (AS2). Of these attacks, 16/21 (76%) were caused
by misconfigurations. The higher proportion of configuration
based attacks illustrates the importance of configuration val-
idation tools capable of validating both the platform and the
pipeline configuration files themselves. Given these attack
patterns, we will examine state of the art of open source CI/CD
security tools to understand how they might address existing
vulnerabilities.

VI. EXISTING SECURITY TOOLS

Many tools attempt to address different aspects of securing
CI/CD environments, with differing levels of success. Some
tools scan for CVEs and validate IaC across the entire plat-
form, like Trivy [64] and Snyk [65], while others like Step
Security’s Wait For Secrets [67] tackle smaller challenges like
providing multifactor authentication for CI/CD.

In order to address RQ3, we aggregated popular open source
CI/CD security tools using systemic keyword searches on
public search engines and code hosting sites like GitHub,
looking for tools which exported keywords like ”GitHub Ac-
tions (security)” and ”CI/CD (security)”. We then categorized
each tool by its advertised purpose, platform support, and
popularity.

A. Pipeline Configuration Validation

Pipeline configuration validation (PCV) tools are among the
most popular CI/CD security tools. Due to the complicated
nature of interconnecting pipeline stages, and limited knowl-
edge of the supply chain at execution time, these tools do
not fully guarantee pipeline security (AS5), but do provide
useful best practice security advice to avoid common syntax
based misconfigurations like command injection. These tools
typically come in the form of command line scanners, like
codeql extractor iac [32], octoscan [34], github actionlint
[31], and zizmor [33]. Most configuration validation tools are
capable of identifying syntactic issues and error-prone patterns
like improper escaping or environment variable usage. While
limited by their corpus of known attacks, these tools can help
mitigate vulnerabilities like command injection before they are
exploited.

B. Platform and Provider Configuration Validation

Platform and provider configuration validation (PPCV) tools
provide recommendations for best practice configuration of
both the platform, the provider, and other tertiary software
installed in the CI/CD system. Many tools are multipurpose,
capable of doing platform configuration validation in addition
to pipeline configuration validation and other IaC scanning.
Tools like Step Security’s Secure Repo [59] validate provider
security configurations, while other tools like trivy [64] and
snyk [65] provide insight into Kubernetes and miscellaneous
IaC targets. In addition to using these tools to secure AS1
and AS6, practices like network segregation, comprehensive
logging, and the usage of intrusion detection or prevention
tools are all recommended to secure the CI/CD platform.

Furthermore, providers themselves also have a number of
built-in security measures to reduce the attack surface. One
such measure is the automatic redacting of secrets from public
facing runner logs in order to avoid leaking privileged creden-
tials. In addition, built-in Static Application Security Testing
(SAST) is offered by providers like GitHub and GitLab [68],
[69] to test and audit code during or separately from CI/CD
jobs. Providers also commonly segregate pipeline execution
permissions based on the authority of the individual who
initiated them, which helps protect pipelines against attacks
that abuse vectors like malicious fork PRs.

C. Software Bill of Materials

Software Bill of Materials (SBOM) generation tools per-
form comprehensive scanning and digestion to create item-
ized lists of the exact versioned software installed in an
environment or contained within an artifact. These resulting
SBOMs can be used to check for the introduction of vulnerable
dependencies over time, or cataloged to better understand
the TCB of a product. These tools are capable of scanning
platform packages (AS1), and tools like syft [56], Trivy [64],
and grype [54] are commonly used to perform this on container
images (AS2). SBOM tools also provide valuable insight into
securing the supply chain (AS3), informing best practices like
package pinning.



TABLE III
CI/CD Pipeline Security Tools and their Advertised Functions. These tools should verify the security of the pipeline’s

structure and environment, rather than the pipeline artifacts (as plugins).

GitHub Actions GitLab Pipelines CircleCI Azure Bicep ArgoCD Terraform AWS Cloud
Formation BitBucket Pipelines Containers Docker Compose Helm Kubernetes Jenkins

Tool

PP
C

V

PC
V

SB
O

M

SC
A

K
V

D

R
A

D

Reach Platform Support

Checkov [52] ✓ ✓ ✓ ✓ 7,200 stars on GitHub
Codeql Extractor IaC [32] ✓ ✓ 42 stars on GitHub
Cycode cimon [29] ✓ 92 stars on GitHub
Cycode Raven [53] ✓ ✓ 635 stars on GitHub
grype [54] ✓ ✓ ✓ 9,000 stars on GitHub OS pkgs, code
kntrl [55] ✓ 89 stars on GitHub
syft [56] ✓ 6,400 stars on GitHub
clair [57] ✓ ✓ 10,400 stars on GitHub
cijail [28] ✓ 36 stars on GitHub
ggshield [58] ✓ 1,700 stars on GitHub Generic
Step Security Harden Runner [30] ✓ 638 stars on GitHub
Step Security Secure Repo [59] ✓ 263 stars on GitHub
Black Duck Detect [60] ✓ ✓ 164 stars on GitHub Generic
Veracode SCA [61] ✓ ✓ 8 stars on GitHub (plugin)
Terrascan [62] ✓ 4,800 stars on GitHub (plugin) (plugin)
safedep vet [63] ✓ ✓ 244 stars on GitHub (plugin) (plugin) (plugin)
github actionlint [31] ✓ 2,900 stars on GitHub
Trivy [64] ✓ ✓ ✓ ✓ 24,100 stars on GitHub
Snyk [65] ✓ ✓ 5,000 stars on GitHub
OWASP Dependency Check [66] ✓ ✓ 6,600 stars on GitHub
octoscan [34] ✓ ✓ 183 stars on GitHub
zizmor [33] ✓ ✓ 1,900 stars on GitHub

D. Software Composition Analysis

Similar to Software Bill of Materials generation, Soft-
ware Composition Analysis performs deep and comprehensive
scanning to understand what components make up a system
or artifact, and how they are conjoined. Typically, software
composition analysis is a step in the greater process of
SBOM generation or KVD, however, there are applications
of software composition analysis which are standalone. A
good example of this is Cycode’s Raven Analyzer [53],
which was created to understand dependency chains between
public GitHub Actions pipelines. This tool ingests a great
amount of detail about public facing pipelines, including their
dependencies, but performs its own unique processing and
serialization. SCA tools can be applied to audit and protect
AS1, AS2, and AS3.

E. Known Vulnerability Detection

KVD combines the techniques used in SBOM genera-
tion and SCA, using the resulting composition information
to search known databases for vulnerabilities that exist in
presently installed software versions. A KVD tool is often
used to perform scans on artifacts like container images, in
order to detect if any CVEs or reported vulnerabilities are
lurking in system packages [54], [57]. Similar to SBOM and
SCA, KVD also defends AS1, AS2, and AS3.

F. Runtime Anomaly Detection

Runtime anomaly detection (RAD) tools are a newer class
of CI/CD defense tools, protecting AS4, that assume inherently
untrusted execution of CI/CD pipelines. A common approach
to increase insight into runners has been to bootstrap monitors
inside their execution contexts, reporting on and refusing
anomalous network traffic [28]–[30]. In addition to network
egress monitoring, some of these runtime defense tools utilize
eBPF (Extended Berkeley Packet Filter) to monitor system
calls for anomalies [55]. Other novel approaches have been
experimented with like two factor authentication during the
runner execution via Step Security’s Wait For Secrets [67],
but instances like these are mostly experimental and rarely
deployed in the wild. This class of tools also includes services
like network and egress monitors, which run concurrently on
the platform to detect network anomalies.

G. The State of Tools

The categorization of existing CI/CD security tools in Table
III has highlighted the importance of many existing cybersecu-
rity practices. As a result of the large breadth of technologies
that make up CI/CD and the disjoint nature of tools meant to
secure them, collections or bundles of tools have emerged as a
leading security solution. Cloud Native Application Protection
Platforms (CNAPPs) are collections of tools rolled into one
package, typically targeted to run in parallel to the Kubernetes
or cloud environments which host the CI/CD stack. These tools



allow for IaC scanning, network analysis, Known Vulnerability
Detection (KVD), and more.

Outside of these cloud tools, the open source community
has begun developing parsing tools which can analyze pipeline
configuration files for misconfigurations, but many do not go
beyond syntactic pattern matching for known bad practices. A
few dynamic runtime solutions have been developed like the
Harden Runner [30], cijail [28], and cimon [29], but with a
focus on network anomaly detection, these tools lack detection
capabilities for more complicated supply chain attacks which
can often pass through the pipeline undetected, like in the case
of Artifact Infection.

Given our previously discerned attack classifications, in
combination with our aggregation and classification of these
CI/CD security tools, we can see a clear relationship between
CI/CD attacks and the defense tools which seek to mitigate
them. The lower proportion of RAD tooling can explain the
presence of attacks targeting AS5, as these breaches are not
easily detectable by the more prevalent static configuration
analysis and KVD scanning tools. It is imperative that this
overlap be explored in order to understand how current secu-
rity tooling might not be keeping up with CI/CD attacks and
to inform the creation of novel security tooling.

VII. GAPS IN THE SECURITY LANDSCAPE

To further examine this challenge, as described in RQ4, we
carefully constructed 7 vulnerable or faulty GitHub Actions
workflows of differing classes, and tested 5 popular open
source security solutions on them to see if they could find
or mitigate the embedded errors. Of the security solutions, we
tested four static analysis or linting tools, and one runtime
security solution. We chose these 5 tools specifically in order
to evaluate configuration based vulnerabilities, due to our
identification of the prevalence of misconfiguration attacks
in Table II. Additionally, we selected these 5 specific tools
because they had a low barrier of entry, and do not require
payment to evaluate. The source code for our evaluations is
publicly available on GitHub1, along with documentation for
each experiment.

As shown in Table IV, each of our 5 selected tools were
able to detect a simple command injection which resulted in
an anomalous outbound network request, but when the syntax
of the command injection was slightly modified (Complex
Command Injection), Checkov [52] failed to detect the com-
mand injection pattern due to it is regex making assumptions
about whitespace. None of the linting tools were able to detect
a malicious network request, while the runtime defense tool
cimon [29] was able to.

Outside of these 3 positive detections, none of the remaining
four pipeline vulnerabilities were detected by any of the
five tools we evaluated. Leaking secrets to GitHub runner
logs was attempted with three differing levels of complexity,
but remained undetected by the security tools in each case.
While GitHub itself has built-in secret redaction for plaintext

1https://github.com/riversideresearch/CICD SoK Evaluators.git

and base64 encoded pipeline tokens, attacks like tj-actions
changed-files [21] where pipeline secrets were exfiltrated by
circumventing GitHub log redaction through double base64
encoding, illustrate the importance of transcending trivial pat-
tern matching and syntax checks. Overall, while able to detect
simple syntax patterns which enable issues like command
injection, the static parsing based tools could not identify any
complex or nuanced vulnerabilities in the CI/CD yaml.

Many static linting tools alert to unpinned dependencies in
the CI/CD pipeline yaml, but do not have deep insight into
the pipeline itself. To illustrate this, we designed the Use
Unpinned Dependency evaluator. This evaluation contains a
pipeline that builds a C binary with CMake, relying on an
external GitHub repository to vendor a library which is used
by the binary. In the CMakeLists.txt build file (Listing 1), we
reference the external repository without a pinned commit ref,
and as such pull in a faulty version of the dependency into the
pipeline. This faulty library code is compiled into the artifact,
and upon execution in a testing stage, causes the binary to
dump the CI/CD runner’s environment variables. This is a
great example of the lack of insight SOTA tools actually have
into the greater execution context of CI/CD pipelines, as only
a binary analysis tool would be able to detect such a change
in the artifact.

cmake_minimum_required(VERSION 3.14)

project(eval)

include(FetchContent)

FetchContent_Declare(

library

GIT_REPOSITORY

https://github.com/riversideresearch/

CICD_SoK_Evaluators.git

GIT_TAG main # unpinned ref

)

FetchContent_MakeAvailable(library)

add_executable(eval main.c)

target_link_libraries(eval PRIVATE library)

Listing 1: ”Use Unpinned Dependency” CMakeLists.txt.
SOTA CI/CD tools are unable to reason about an embedded
build system like this, even though it directly impacts the
CI/CD environment and end-state artifact.

The remaining undetected evaluators, Install Known Bad
Dependency and Pin A Bad Dependency, involve a runner
installing a log4j vulnerable package, and a pipeline using
a pinned version of a known vulnerable version of Harden
Runner [30].



Evaluator Log
gin

g
Se

cr
et

Lea
k

Ano
malo

us
Req

ue
st

Sim
ple

Com
man

d
inj

ec
tio

n

Com
ple

x
Com

man
d

inj
ec

tio
n

In
sta

ll
Kno

wn
Bad

Dep
en

de
nc

y

Use
Unp

inn
ed

Dep
en

de
nc

y

Pin
A

Bad
Dep

en
de

nc
y

cimon [29] ✗ ✓ ✓ ✓ ✗ ✗ -
Checkov [52] ✗ ✗ ✓ ✗ ✗ ✗ ✗

github actionlint [31] ✗ ✗ ✓ ✓ ✗ ✗ ✗
octoscan [34] ✗ ✗ ✓ ✓ ✗ ✗ ✗

zizmor [33] ✗ ✗ ✓ ✓ ✗ ✗ ✗

✓ Properly detected fault ✗ Failed to detect fault - Not in scope for tool

TABLE IV
GitHub Vulnerability Detection Evaluation for Existing Tools. SOTA static and dynamic tools are unable to sufficiently

reason about the CI/CD pipeline behavior and system at large.

VIII. DISCUSSION & FUTURE WORK

In our analysis of documented CI/CD attacks, we observed
that 50% of attacks targeted the CI/CD provider, and 76% in-
volved some form of misconfiguration abuse as its initial attack
vector. We then tested 5 open-source CI/CD security tools on 7
evaluation pipelines which contained misconfiguration related
vulnerabilities to observe the relevance of our findings first-
hand. In our evaluation, vulnerabilities were mitigated by the
tools in only 29% of the trials, and 4 out of the 7 evaluations
went completely unmitigated by any of the tools.

Current syntactic linting and parsing tools can catch many
trivial vulnerabilities, but not more advanced and obfuscated
ones. Our study revealed two substantiating examples:

1. While GitHub itself will redact plaintext and base64
encoded pipeline secrets from log files, attacks like
tj-actions changed-files [21] have successfully defeated
these protections by leaking secrets which were encoded
in base64 twice. Existing GitHub Actions configuration
linting tools do not alert to log secret leakage in any form,
including plaintext.

2. We found a bug in the open source tool Checkov, where
the linter’s regular expression for matching command
injection patterns erroneously matched against exclu-
sively whitespace characters, ignoring newlines, within
the brackets of the embedded template command. Using
this knowledge, we were able to successfully perform
command injection undetected by this tool through mix-
ing in newline characters.

The commonality between these examples is that syntax-
based rules that examine only the form of the configuration
commands instead of the run-time (semantic) implications are
prone to incompleteness. Therefore, we reccomend that future
research pursue the creation of semantically aware tooling to
conduct complete or property-based testing. These method-
ologies have been shown in traditional program analysis to be
sufficient to syntactic linting in detecting known and unknown
forms of vulnerabilities [70].

In addition, the high proportion of attacks targeting CI/CD
providers in our findings illustrates a need for greater provider
hardening. In particular, we recommend introducing provider-
level anomaly detection and supply chain monitoring. CI/CD
providers already track and log events as they occur, but too
often these event logs are only used after-the-fact to understand
how an attack happened, rather than prevent it in real-time.
To give an example from the same tj-actions changed-files
attack [21], providers should immediately alert to an anomaly
when an event like rewriting repository tag references occurs,
and lock down a repository to prevent further abuse. While
such features could be implemented by providers themselves,
they could just as well be implemented through the providers
exposed APIs as a standalone service.

Another under-explored front in provider security is supply
chain monitoring. Many providers like GitHub also manage
a PaP marketplace (like the GitHub Actions marketplace)
but don’t actively employ malware scanning techniques on
the packages they host. In addition to applying best-practices
like malware scanning, these marketplaces would benefit from
principled approaches beyond human review for keeping zero
days in the supply chain from infecting downstream projects.
For instance, providers which own their PaP distribution
ecosystem could explore automated version rollbacks and
mitigations to stop vulnerabilities in real-time as they are
detected and classified in databases like the GitHub Security
Advisory.

IX. CONCLUSION

We have presented a novel quantification of CI/CD, includ-
ing a breakdown of terminology as well as a generalization
of its architecture and patterns to aid in understanding the
scope of its security needs. Additionally, we have aggregated
and categorized 21 in-the-wild CI/CD attacks, identified 22
relevant security tools spanning 6 advertised security capa-
bilities, as well as performed novel gap analysis using of
5 of the tools with GitHub Actions pipelines. As a result,
we conclude that state-of-the-art CI/CD defense tools are



inadequate for defending against attacks mimicking a fraction
of the complexity of those we have recorded in-the-wild, and
that the research community should pursue solutions to CI/CD
security which emphasize semantic configuration validation as
well as provider hardening and anomaly detection.

We have presented a breakdown and generalization of
CI/CD terminology, architecture, and patterns to aid in under-
standing the scope of CI/CD security needs. We aggregated
and categorized 21 in-the-wild CI/CD attacks, identified 22
relevant security tools spanning six advertised security ca-
pabilities, and performed novel gap analysis using five of
the tools with GitHub Actions pipelines. We identified that
76% of our cataloged attacks are based on misconfiguration
exploits, often targeting the CI/CD provider service itself, and
that state-of-the-art defense tools based on syntactic checks
are inadequate for defending against them. We suggest that
the research community pursue solutions to CI/CD security
that emphasize semantic configuration validation as well as
provider hardening and anomaly detection.

X. ACKNOWLEDGEMENTS

The authors thank Dr. Mike Shields and Josh Arey of Vig-
ilant Systems, as well as our colleague Drew Haker, for their
assistance in supporting and reviewing this work. This research
was supported by US government research funding. The views
expressed are those of the authors and do not necessarily
reflect the official policy or position of the Department of the
Air Force, the Department of Defense, or the U.S. government.
Approved for public release; distribution is unlimited 96TW-
2025-0024.

REFERENCES

[1] SolarWinds, “Faq: Security advisory,” https://www.solarwinds.com/
sa-overview/securityadvisory/faq, 2021.

[2] CodeCov, “Bash uploader security update,” https://about.codecov.io/
security-update/?ref=blog.gitguardian.com, 2021.

[3] J. Stawinski, “Playing with fire - how we executed a critical
supply chain attack on pytorch,” https://johnstawinski.com/2024/01/11/
playing-with-fire-how-we-executed-a-critical-supply-chain-attack-on-pytorch/,
2024.

[4] H. O. Delicheh and T. Mens, “Mitigating security issues in github
actions,” in Proceedings of the 2024 ACM/IEEE 4th International
Workshop on Engineering and Cybersecurity of Critical Systems
(EnCyCriS) and 2024 IEEE/ACM Second International Workshop on
Software Vulnerability, ser. EnCyCriS/SVM ’24. New York, NY,
USA: Association for Computing Machinery, 2024, p. 6–11. [Online].
Available: https://doi.org/10.1145/3643662.3643961

[5] H. O. Delicheh, A. Decan, and T. Mens, “Quantifying security issues
in reusable javascript actions in github workflows,” in 2024 IEEE/ACM
21st International Conference on Mining Software Repositories (MSR),
2024, pp. 692–703.

[6] Z. Pan, W. Shen, X. Wang, Y. Yang, R. Chang, Y. Liu, C. Liu, Y. Liu, and
K. Ren, “Ambush from all sides: Understanding security threats in open-
source software ci/cd pipelines,” IEEE Transactions on Dependable and
Secure Computing, vol. 21, no. 1, pp. 403–418, 2024.

[7] J. Ayala and J. Garcia, “An empirical study on workflows
and security policies in popular github repositories,” in 2023
IEEE/ACM 1st International Workshop on Software Vulnerability
(SVM). IEEE, May 2023, p. 6–9. [Online]. Available: http:
//dx.doi.org/10.1109/SVM59160.2023.00006

[8] N. M K, M. B S, N. Khandelwal, N. Pai, and S. L, “Ci/cd pipeline with
vulnerability mitigation,” in 2023 International Conference on Recent
Advances in Science and Engineering Technology (ICRASET), 2023, pp.
1–6.

[9] E. P. Enoiu, D. Truscan, A. Sadovykh, and W. Mallouli, “Veridevops
software methodology: Security verification and validation for devops
practices,” in Proceedings of the 18th International Conference on
Availability, Reliability and Security, ser. ARES ’23. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3600160.3605054

[10] L. Nikolov and A. Aleksieva-Petrova, “Framework for integrating threat
modeling into a devops pipeline for enhanced software development,”
in 2024 International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), 2024, pp. 1–5.

[11] D. V. Landuyt, L. Sion, W. Philips, and W. Joosen, “From automation to
ci/cd: a comparative evaluation of threat modeling tools,” in 2024 IEEE
Secure Development Conference (SecDev), 2024, pp. 35–45.

[12] A. R. Patel and S. Tyagi, “The state of test automation in devops: A
systematic literature review,” in Proceedings of the 2022 Fourteenth
International Conference on Contemporary Computing, ser. IC3-2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
689–695. [Online]. Available: https://doi.org/10.1145/3549206.3549321

[13] T. Klooster, F. Turkmen, G. Broenink, R. T. Hove, and M. Böhme,
“Continuous fuzzing: A study of the effectiveness and scalability of
fuzzing in ci/cd pipelines,” in 2023 IEEE/ACM International Workshop
on Search-Based and Fuzz Testing (SBFT), 2023, pp. 25–32.

[14] A. Sharma, C. Cadar, and J. Metzman, “Effective fuzzing within
ci/cd pipelines (registered report),” in Proceedings of the 3rd ACM
International Fuzzing Workshop, ser. FUZZING 2024. New York, NY,
USA: Association for Computing Machinery, 2024, p. 52–60. [Online].
Available: https://doi.org/10.1145/3678722.3685534

[15] Z. Sun, Z. Quan, S. Yu, L. Zhang, and D. Mao, “A knowledge-driven
framework for software supply chain security analysis,” in Proceedings
of the 2024 8th International Conference on Control Engineering
and Artificial Intelligence, ser. CCEAI ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 267–272. [Online].
Available: https://doi.org/10.1145/3640824.3640866

[16] C. Okafor, T. R. Schorlemmer, S. Torres-Arias, and J. C. Davis,
“Sok: Analysis of software supply chain security by establishing
secure design properties,” in Proceedings of the 2022 ACM Workshop
on Software Supply Chain Offensive Research and Ecosystem
Defenses, ser. SCORED’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 15–24. [Online]. Available:
https://doi.org/10.1145/3560835.3564556

[17] K. Brady, S. Moon, T. Nguyen, and J. Coffman, “Docker container
security in cloud computing,” in 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC), 2020, pp. 0975–
0980.

[18] L. Verderame, L. Caviglione, R. Carbone, and A. Merlo, “Secco:
Automated services to secure containers in the devops paradigm,”
in Proceedings of the 2023 International Conference on Research in
Adaptive and Convergent Systems, ser. RACS ’23. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3599957.3606222

[19] A. El Khairi, M. Caselli, C. Knierim, A. Peter, and A. Continella,
“Contextualizing system calls in containers for anomaly-based intrusion
detection,” in Proceedings of the 2022 on Cloud Computing Security
Workshop, ser. CCSW’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 9–21. [Online]. Available:
https://doi.org/10.1145/3560810.3564266

[20] Docker, “Docker setup buildx action,” https://github.com/docker/
setup-buildx-action, 2025.

[21] StepSecurity, “tj-actions changed-files through 45.0.7 allows remote
attackers to discover secrets by reading actions logs,” https://github.com/
advisories/GHSA-mrrh-fwg8-r2c3, 2025.

[22] A. Khan, “The monsters in your build cache - github
actions cache poisoning,” https://adnanthekhan.com/2024/05/06/
the-monsters-in-your-build-cache-github-actions-cache-poisoning/,
2024.

[23] GitHub, “Github actions cache,” https://github.com/actions/cache, 2025.
[24] Y. Gu, L. Ying, H. Chai, Y. Pu, H. Duan, and X. Gao, “More haste, less

speed: Cache related security threats in continuous integration services,”
in 2024 IEEE Symposium on Security and Privacy (SP), 2024, pp. 1179–
1197.

[25] GitHub, “Discrepancy between what’s in github and what’s been
published to pypi for v8.3.41,” https://github.com/ultralytics/ultralytics/
issues/18027, 2024.

[26] ——, “Actions runner,” https://github.com/actions/runner, 2025.



[27] GitLab, “Run your ci/cd jobs in docker containers,” https://docs.gitlab.
com/ci/docker/using docker images/, 2025.

[28] Staex, “cijail,” https://github.com/staex-io/cijail, 2024.
[29] C. Labs, “Cimon,” https://github.com/CycodeLabs/cimon-action, 2024.
[30] S. Security, “Harden runner,” https://github.com/step-security/

harden-runner, 2024.
[31] rhysd, “actionlint,” https://github.com/rhysd/actionlint, 2024.
[32] G. A. Security, “codeql extractor iac,” https://github.com/

advanced-security/codeql-extractor-iac, 2024.
[33] woodruffw, “zizmor,” https://github.com/woodruffw/zizmor, 2025.
[34] synacktiv, “octoscan,” https://github.com/synacktiv/octoscan, 2025.
[35] M. McQuaid, “Security incident disclosure,” https://brew.sh/2018/08/05/

security-incident-disclosure/, 2018.
[36] D. Ward, “A deeper dive into our may 2019 se-

curity incident,” https://stackoverflow.blog/2021/01/25/
a-deeper-dive-into-our-may-2019-security-incident/, 2019.

[37] webmin, “Remote command execution [cve-2019-15231],” https:
//webmin.com/security//#remote-command-execution-cve-2019-15231,
2019.

[38] N. Popov, “Changes to git commit workflow,” https://news-web.php.net/
php.internals/113838, 2021.

[39] StepSecurity, “Stepsecurity detects ci/cd supply chain attack in google’s
open-source project flank in real-time,” https://www.stepsecurity.io/
case-studies/flank, 2024.

[40] ——, “Stepsecurity detects ci/cd supply chain attack in microsoft’s
open-source project azure karpenter provider in real-time,” https://www.
stepsecurity.io/case-studies/azure-karpenter-provider, 2024.

[41] Kong, “December 2024 unauthorized kong ingress con-
troller 3.4.0 build,” https://konghq.com/blog/product-releases/
december-2024-unauthorized-kong-ingress-controller-3-4-0-build,
2025.

[42] woodruffw, “Artifact poisoning vulnerability in action-download-artifact
v5 and earlier,” https://github.com/advisories/GHSA-5xr6-xhww-33m4,
2022.

[43] M. Gaddy, “Uber breaches,” https://www.breaches.cloud/incidents/uber/,
2023.

[44] Z. Whittaker, “Samsung spilled smartthings app source code and secret
keys,” https://techcrunch.com/2019/05/08/samsung-source-code-leak/,
2019.

[45] C. Cimpanu, “Mercedes-benz onboard logic unit (olu)
source code leaks online,” https://www.zdnet.com/article/
mercedes-benz-onboard-logic-unit-olu-source-code-leaks-online/,
2020.

[46] ——, “Nissan source code leaked online after git
repo misconfiguration,” https://www.zdnet.com/article/
nissan-source-code-leaked-online-after-git-repo-misconfiguration/,
2021.

[47] Z. Whittaker, “An internal code repo used by new york state’s
it office was exposed online,” https://techcrunch.com/2021/06/24/
an-internal-code-repo-used-by-new-york-states-it-office-was-exposed-online/,
2021.

[48] jai, “Security incident on deepsource’s github
application,” https://discuss.deepsource.com/t/
security-incident-on-deepsource-s-github-application/131, 2020.

[49] Montana, “Security bulletin,” https://travis-ci.community/t/
security-bulletin/12081, 2021.

[50] B. Computer, “Solana pump.fun tool dogwiftool compromised
to drain wallets,” https://www.bleepingcomputer.com/news/security/
solana-pumpfun-tool-dogwiftool-compromised-to-drain-wallets/, 2025.

[51] GitHub, “Owasp top 10 ci/cd security risks,” https://github.com/
cider-security-research/top-10-cicd-security-risks, 2023.

[52] bridgecrew, “checkov,” https://github.com/bridgecrewio/checkov, 2024.
[53] C. Labs, “Raven,” https://github.com/CycodeLabs/raven, 2024.
[54] A. Inc, “grype,” https://github.com/anchore/grype, 2024.
[55] kondukto io, “kntrl,” https://github.com/kondukto-io/kntrl, 2025.
[56] A. Inc, “syft,” https://github.com/anchore/syft, 2024.
[57] R. H. Quay, “clair,” https://github.com/quay/clair, 2024.
[58] G. Gaurdian, “ggshield,” https://github.com/GitGuardian/ggshield, 2024.
[59] S. Security, “Secure repo,” https://github.com/step-security/secure-repo,

2024.
[60] B. D. Software, “detect,” https://github.com/blackducksoftware/detect,

2024.
[61] V. Software, “Veracode sca,” https://github.com/veracode/veracode-sca,

2024.

[62] Tenable, “terrascan,” https://github.com/tenable/terrascan, 2024.
[63] SafeDep, “vet,” https://github.com/safedep/vet, 2024.
[64] A. Security, “trivy,” https://github.com/aquasecurity/trivy, 2024.
[65] Synk, “snyk cli,” https://github.com/snyk/cli, 2024.
[66] J. Long, “Owasp dependency check,” https://github.com/jeremylong/

DependencyCheck, 2024.
[67] S. Security, “Wait for secrets,” https://github.com/step-security/

wait-for-secrets, 2024.
[68] GitHub, “Github advanced security,” https://github.com/security/

advanced-security, 2025.
[69] GitLab, “Gitlab static application security testing,” https://docs.gitlab.

com/user/application security/sast/, 2025.
[70] M. Chiari, M. De Pascalis, and M. Pradella, “Static analysis of infras-

tructure as code: a survey,” in 2022 IEEE 19th International Conference
on Software Architecture Companion (ICSA-C), 2022, pp. 218–225.


